technological ethics

All posts tagged technological ethics

So with the job of White House Office of Science and Technology Policy director having gone to Dr. Arati Prabhakar back in October, rather than Dr. Alondra Nelson, and the release of the “Blueprint for an AI Bill of Rights” (henceforth “BfaAIBoR” or “blueprint”) a few weeks after that, I am both very interested also pretty worried to see what direction research into “artificial intelligence” is actually going to take from here.

To be clear, my fundamental problem with the “Blueprint for an AI bill of rights” is that while it pays pretty fine lip-service to the ideas of  community-led oversight, transparency, and abolition of and abstaining from developing certain tools, it begins with, and repeats throughout, the idea that sometimes law enforcement, the military, and the intelligence community might need to just… ignore these principles. Additionally, Dr. Prabhakar was director of DARPA for roughly five years, between 2012 and 2015, and considering what I know for a fact got funded within that window? Yeah.

To put a finer point on it, 14 out of 16 uses of the phrase “law enforcement” and 10 out of 11 uses of “national security” in this blueprint are in direct reference to why those entities’ or concept structures’ needs might have to supersede the recommendations of the BfaAIBoR itself. The blueprint also doesn’t mention the depredations of extant military “AI” at all. Instead, it points to the idea that the Department Of Defense (DoD) “has adopted [AI] Ethical Principles, and tenets for Responsible Artificial Intelligence specifically tailored to its [national security and defense] activities.” And so with all of that being the case, there are several current “AI” projects in the pipe which a blueprint like this wouldn’t cover, even if it ever became policy, and frankly that just fundamentally undercuts Much of the real good a project like this could do.

For instance, at present, the DoD’s ethical frames are entirely about transparency, explainability, and some lipservice around equitability and “deliberate steps to minimize unintended bias in Al …” To understand a bit more of what I mean by this, here’s the DoD’s “Responsible Artificial Intelligence Strategy…” pdf (which is not natively searchable and I had to OCR myself, so heads-up); and here’s the Office of National Intelligence’s “ethical principles” for building AI. Note that not once do they consider the moral status of the biases and values they have intentionally baked into their systems.

An "Explainable AI" diagram from DARPA, showing two flowcharts, one on top of the other. The top one is labeled "today" and has the top level condition "task" branching to both a confused looking human user and state called "learned function" which is determined by a previous state labeled "machine learning process" which is determined by a state labeled "training data." "Learned Function" feeds "Decision or Recommendation" to the human user, who has several questions about the model's beaviour, such as "why did you do that?" and "when can i trust you?" The bottom one is labeled "XAI" and has the top level condition "task" branching to both a happy and confident looking human user and state called "explainable model/explanation interface" which is determined by a previous state labeled "new machine learning process" which is determined by a state labeled "training data." "explainable model/explanation interface" feeds choices to the human user, who can feed responses BACK to the system, and who has several confident statements about the model's beaviour, such as "I understand why" and "I know when to trust you."

An “Explainable AI” diagram from DARPA

Continue Reading

I’m Not Afraid of AI Overlords— I’m Afraid of Whoever’s Training Them To Think That Way

by Damien P. Williams

I want to let you in on a secret: According to Silicon Valley’s AI’s, I’m not human.

Well, maybe they think I’m human, but they don’t think I’m me. Or, if they think I’m me and that I’m human, they think I don’t deserve expensive medical care. Or that I pose a higher risk of criminal recidivism. Or that my fidgeting behaviours or culturally-perpetuated shame about my living situation or my race mean I’m more likely to be cheating on a test. Or that I want to see morally repugnant posts that my friends have commented on to call morally repugnant. Or that I shouldn’t be given a home loan or a job interview or the benefits I need to stay alive.

Now, to be clear, “AI” is a misnomer, for several reasons, but we don’t have time, here, to really dig into all the thorny discussion of values and beliefs about what it means to think, or to be a pow3rmind— especially because we need to take our time talking about why values and beliefs matter to conversations about “AI,” at all. So instead of “AI,” let’s talk specifically about algorithms, and machine learning.

Machine Learning (ML) is the name for a set of techniques for systematically reinforcing patterns, expectations, and desired outcomes in various computer systems. These techniques allow those systems to make sought after predictions based on the datasets they’re trained on. ML systems learn the patterns in these datasets and then extrapolate them to model a range of statistical likelihoods of future outcomes.

Algorithms are sets of instructions which, when run, perform functions such as searching, matching, sorting, and feeding the outputs of any of those processes back in on themselves, so that a system can learn from and refine itself. This feedback loop is what allows algorithmic machine learning systems to provide carefully curated search responses or newsfeed arrangements or facial recognition results to consumers like me and you and your friends and family and the police and the military. And while there are many different types of algorithms which can be used for the above purposes, they all remain sets of encoded instructions to perform a function.

And so, in these systems’ defense, it’s no surprise that they think the way they do: That’s exactly how we’ve told them to think.

[Image of Michael Emerson as Harold Finch, in season 2, episode 1 of the show Person of Interest, “The Contingency.” His face is framed by a box of dashed yellow lines, the words “Admin” to the top right, and “Day 1” in the lower right corner.]

Continue Reading

Much of my research deals with the ways in which bodies are disciplined and how they go about resisting that discipline. In this piece, adapted from one of the answers to my PhD preliminary exams written and defended two months ago, I “name the disciplinary strategies that are used to control bodies and discuss the ways that bodies resist those strategies.” Additionally, I address how strategies of embodied control and resistance have changed over time, and how identifying and existing as a cyborg and/or an artificial intelligence can be understood as a strategy of control, resistance, or both.

In Jan Golinski’s Making Natural Knowledge, he spends some time discussing the different understandings of the word “discipline” and the role their transformations have played in the definition and transmission of knowledge as both artifacts and culture. In particular, he uses the space in section three of chapter two to discuss the role Foucault has played in historical understandings of knowledge, categorization, and disciplinarity. Using Foucault’s work in Discipline and Punish, we can draw an explicit connection between the various meanings “discipline” and ways that bodies are individually, culturally, and socially conditioned to fit particular modes of behavior, and the specific ways marginalized peoples are disciplined, relating to their various embodiments.

This will demonstrate how modes of observation and surveillance lead to certain types of embodiments being deemed “illegal” or otherwise unacceptable and thus further believed to be in need of methodologies of entrainment, correction, or reform in the form of psychological and physical torture, carceral punishment, and other means of institutionalization.

Locust, “Master and Servant (Depeche Mode Cover)”

Continue Reading

Below are the slides, audio, and transcripts for my talk ‘”Any Sufficiently Advanced Neglect is Indistinguishable from Malice”: Assumptions and Bias in Algorithmic Systems,’ given at the 21st Conference of the Society for Philosophy and Technology, back in May 2019.

(Cite as: Williams, Damien P. ‘”Any Sufficiently Advanced Neglect is Indistinguishable from Malice”: Assumptions and Bias in Algorithmic Systems;’ talk given at the 21st Conference of the Society for Philosophy and Technology; May 2019)

Now, I’ve got a chapter coming out about this, soon, which I can provide as a preprint draft if you ask, and can be cited as “Constructing Situated and Social Knowledge: Ethical, Sociological, and Phenomenological Factors in Technological Design,” appearing in Philosophy And Engineering: Reimagining Technology And Social Progress. Guru Madhavan, Zachary Pirtle, and David Tomblin, eds. Forthcoming from Springer, 2019. But I wanted to get the words I said in this talk up onto some platforms where people can read them, as soon as possible, for a  couple of reasons.

First, the Current Occupants of the Oval Office have very recently taken the policy position that algorithms can’t be racist, something which they’ve done in direct response to things like Google’s Hate Speech-Detecting AI being biased against black people, and Amazon claiming that its facial recognition can identify fear, without ever accounting for, i dunno, cultural and individual differences in fear expression?

[Free vector image of a white, female-presenting person, from head to torso, with biometric facial recognition patterns on her face; incidentally, go try finding images—even illustrations—of a non-white person in a facial recognition context.]


All these things taken together are what made me finally go ahead and get the transcript of that talk done, and posted, because these are events and policy decisions about which I a) have been speaking and writing for years, and b) have specific inputs and recommendations about, and which are, c) frankly wrongheaded, and outright hateful.

And I want to spend time on it because I think what doesn’t get through in many of our discussions is that it’s not just about how Artificial Intelligence, Machine Learning, or Algorithmic instances get trained, but the processes for how and the cultural environments in which HUMANS are increasingly taught/shown/environmentally encouraged/socialized to think is the “right way” to build and train said systems.

That includes classes and instruction, it includes the institutional culture of the companies, it includes the policy landscape in which decisions about funding and get made, because that drives how people have to talk and write and think about the work they’re doing, and that constrains what they will even attempt to do or even understand.

All of this is cumulative, accreting into institutional epistemologies of algorithm creation. It is a structural and institutional problem.

So here are the Slides:

The Audio:

[Direct Link to Mp3]

And the Transcript is here below the cut:

Continue Reading

2017 SRI Technology and Consciousness Workshop Series Final Report

So, as you know, back in the summer of 2017 I participated in SRI International’s Technology and Consciousness Workshop Series. This series was an eight week program of workshops the current state of the field around, the potential future paths toward, and the moral and social implications of the notion of conscious machines. To do this, we brought together a rotating cast of dozens of researchers in AI, machine learning, psychedelics research, ethics, epistemology, philosophy of mind, cognitive computing, neuroscience, comparative religious studies, robotics, psychology, and much more.

Image of a rectangular name card with a stylized "Technology & Consciousness" logo, at the top, the name Damien Williams in bold in the middle, and SRI International italicized at the bottom; to the right a blurry wavy image of what appears to be a tree with a person standing next to it and another tree in the background to the left., all partially mirrored in a surface at the bottom of the image.

[Image of my name card from the Technology & Consciousness workshop series.]

We traveled from Arlington, VA, to Menlo Park, CA, to Cambridge, UK, and back, and while my primary role was that of conference co-ordinator and note-taker (that place in the intro where it says I “maintained scrupulous notes?” Think 405 pages/160,656 words of notes, taken over eight 5-day weeks of meetings), I also had three separate opportunities to present: Once on interdisciplinary perspectives on minds and mindedness; then on Daoism and Machine Consciousness; and finally on a unifying view of my thoughts across all of the sessions. In relation to this report, I would draw your attention to the following passage:

An objection to this privileging of sentience is that it is anthropomorphic “meat chauvinism”: we are projecting considerations onto technology that derive from our biology. Perhaps conscious technology could have morally salient aspects distinct from sentience: the basic elements of its consciousness could be different than ours.

All of these meetings were held under the auspices of the Chatham House Rule, which meant that there were many things I couldn’t tell you about them, such as the names of the other attendees, or what exactly they said in the context of the meetings. What I was able tell you, however, was what I talked about, and I did, several times. But as of this week, I can give you even more than that.

This past Thursday, SRI released an official public report on all of the proceedings and findings from the 2017 SRI Technology and Consciousness Workshop Series, and they have told all of the participants that they can share said report as widely as they wish. Crucially, that means that I can share it with you. You can either click this link, here, or read it directly, after the cut.

Continue Reading

[This paper was prepared for the 2019 Towards Conscious AI Systems Symposium co-located with the Association for the Advancement of Artificial Intelligence 2019 Spring Symposium Series.

Much of this work derived from my final presentation at the 2017 SRI Technology and Consciousness Workshop Series: “Science, Ethics, Epistemology, and Society: Gains for All via New Kinds of Minds”.]

Abstract. This paper explores the moral, epistemological, and legal implications of multiple different definitions and formulations of human and nonhuman consciousness. Drawing upon research from race, gender, and disability studies, including the phenomenological basis for knowledge and claims to consciousness, I discuss the history of the struggles for personhood among different groups of humans, as well as nonhuman animals, and systems. In exploring the history of personhood struggles, we have a precedent for how engagements and recognition of conscious machines are likely to progress, and, more importantly, a roadmap of pitfalls to avoid. When dealing with questions of consciousness and personhood, we are ultimately dealing with questions of power and oppression as well as knowledge and ontological status—questions which require a situated and relational understanding of the stakeholders involved. To that end, I conclude with a call and outline for how to place nuance, relationality, and contextualization before and above the systematization of rules or tests, in determining or applying labels of consciousness.

Keywords: Consciousness, Machine Consciousness, Philosophy of Mind, Phenomenology, Bodyminds

[Overlapping images of an Octopus carrying a shell, a Mantis Shrimp on the sea floor, and a Pepper Robot]

Continue Reading

We do a lot of work and have a lot of conversations around here with people working on the social implications of technology, but some folx sometimes still don’t quite get what I mean when I say that our values get embedded in our technological systems, and that the values of most internet companies, right now, are capitalist brand engagement and marketing. To that end, I want to take a minute to talk to you about something that happened, this week and just a heads-up, this conversation is going to mention sexual assault and the sexual predatory behaviour of men toward young girls.
Continue Reading

Kirsten and I spent the week between the 17th and the 21st of September with 18 other utterly amazing people having Chatham House Rule-governed conversations about the Future of Artificial Intelligence.

We were in Norway, in the Juvet Landscape Hotel, which is where they filmed a lot of the movie Ex Machina, and it is even more gorgeous in person. None of the rooms shown in the film share a single building space. It’s astounding as a place of both striking architectural sensibility and also natural integration as they built every structure in the winter to allow the dormancy cycles of the plants and animals to dictate when and where they could build, rather than cutting anything down.

And on our first full day here, Two Ravens flew directly over my and Kirsten’s heads.

Yes.

[Image of a rainbow rising over a bend in a river across a patchy overcast sky, with the river going between two outcropping boulders, trees in the foreground and on either bank and stretching off into the distance, and absolutely enormous mountains in the background]

I am extraordinarily grateful to Andy Budd and the other members of the Clear Left team for organizing this, and to Cennydd Bowles for opening the space for me to be able to attend, and being so forcefully enthused about the prospect of my attending that he came to me with a full set of strategies in hand to get me to this place. That kind of having someone in your corner means the world for a whole host of personal reasons, but also more general psychological and socially important ones, as well.

I am a fortunate person. I am a person who has friends and resources and a bloody-minded stubbornness that means that when I determine to do something, it will more likely than not get fucking done, for good or ill.

I am a person who has been given opportunities to be in places many people will never get to see, and have conversations with people who are often considered legends in their fields, and start projects that could very well alter the shape of the world on a massive scale.

Yeah, that’s a bit of a grandiose statement, but you’re here reading this, and so you know where I’ve been and what I’ve done.

I am a person who tries to pay forward what I have been given and to create as many spaces for people to have the opportunities that I have been able to have.

I am not a monetarily wealthy person, measured against my society, but my wealth and fortune are things that strike me still and make me take stock of it all and what it can mean and do, all over again, at least once a week, if not once a day, as I sit in tension with who I am, how the world perceives me, and what amazing and ridiculous things I have had, been given, and created the space to do, because and in violent spite of it all.

So when I and others come together and say we’re going to have to talk about how intersectional oppression and the lived experiences of marginalized peoples affect, effect, and are affected and effected BY the wider techoscientific/sociotechnical/sociopolitical/socioeconomic world and what that means for how we design, build, train, rear, and regard machine minds, then we are going to have to talk about how intersectional oppression and the lived experiences of marginalized peoples affect, effect, and are affected and effected by the wider techoscientific/sociotechnical/sociopolitical/socioeconomic world and what that means for how we design, build, train, rear, and regard machine minds.

So let’s talk about what that means.

Continue Reading

Previously, I told you about The Human Futures and Intelligent Machines Summit at Virginia Tech, and now that it’s over, I wanted to go ahead and put the full rundown of the events all in one place.

The goals for this summit were to start looking at the ways in which issues of algorithms, intelligent machine systems, human biotech, religion, surveillance, and more will intersect and affect us in the social, academic, political spheres. The big challenge in all of this was seen as getting better at dealing with this in the university and public policy sectors, in America, rather than the seeming worse we’ve gotten, so far.

Here’s the schedule. Full notes, below the cut.

Friday, June 8, 2018

  • Josh Brown on “the distinction between passive and active AI.”
  • Daylan Dufelmeier on “the potential ramifications of using advanced computing in the criminal justice arena…”
  • Mario Khreiche on the effects of automation, Amazon’s Mechanical Turk, and the Microlabor market.
  • Aaron Nicholson on how technological systems are used to support human social outcomes, specifically through the lens of policing  in the city of Atlanta
  • Ralph Hall on “the challenges society will face if current employment and income trends persist into the future.”
  • Jacob Thebault-Spieker on “how pro-urban and pro-wealth biases manifest in online systems, and  how this likely influences the ‘education’ of AI systems.”
  • Hani Awni on the sociopolitical of excluding ‘relational’ knowledge from AI systems.

Saturday, June 9, 2018

  • Chelsea Frazier on rethinking our understandings of race, biocentrism, and intelligence in relation to planetary sustainability and in the face of increasingly rapid technological advancement.
  • Ras Michael Brown on using the religions technologies of West Africa and the West African Diaspora to reframe how we think about “hybrid humanity.”
  • Damien Williams on how best to use interdisciplinary frameworks in the creation of machine intelligence and human biotechnological interventions.
  • Sara Mattingly-Jordan on the implications of the current global landscape in AI ethics regulation.
  • Kent Myers on several ways in which the intelligence community is engaging with human aspects of AI, from surveillance to sentiment analysis.
  • Emma Stamm on the idea that datafication of the self and what about us might be uncomputable.
  • Joshua Earle on “Morphological Freedom.”

Continue Reading

This weekend, Virginia Tech’s Center for the Humanities is hosting The Human Futures and Intelligent Machines Summit, and there is a link for the video cast of the events. You’ll need to Download and install Zoom, but it should be pretty straightforward, other than that.

You’ll find the full Schedule, below the cut.

Continue Reading