my writing

All posts tagged my writing

Reimagining “AI’s” Environmental and Sociotechnical Materialities

There’s a new open-access book of collected essays called Reimagining AI for Environmental Justice and Creativity, and I happen to have an essay in it. The collection is made of contributions from participants in the October 2024 “Reimagining AI for Environmental Justice and Creativity” panels and workshops put on by Jess Reia, MC Forelle, and Yingchong Wang, and I’ve included my essay here, for you. That said, I highly recommend checking out the rest of the book, because all the contributions are fantastic.

This work was co-sponsored by: The Karsh Institute Digital Technology for Democracy Lab, The Environmental Institute, and The School of Data Science, all at UVA. The videos for both days of the “Reimagining AI for Environmental Justice and Creativity” talks are now available, and you can find them at the Karsh Institute website, and also below, before the text of my essay.

All in all, I think these these are some really great conversations on “AI” and environmental justice. They cover “AI”‘s extremely material practical aspects, the deeply philosophical aspects, and the necessary and fundamental connections between the two, and these are crucial discussions to be having, especially right now.

Hope you dig it.

Continue Reading

It’s really disheartening and honestly kind of telling that in spite of everything, ChatGPT is actively marketing itself to students in the run-up to college finals season.

We’ve talked many (many) times before about the kinds of harm that can come from giving over too much epistemic and heuristic authority over to systems built by people who have repeatedly, doggedly proven that they will a) buy into their own hype and b) refuse to ever question their own biases and hubris. But additionally, there’s been at least two papers in the past few months alone, and more in the last two years (1, 2, 3), demonstrating that over-reliance on “AI” tools diminishes critical thinking capacity and prevents students from building the kinds of foundational skills which allow them to learn more complex concepts, adapt to novel situations, and grow into experts.

Screenshot of ChatpGPT page:ChaptGPT Promo: 2 months free for students ChatGPT Plus is now free for college students through May Offer valid for students in the US and Canada [Buttons reading "Claim offer" and "learn more" An image of a pencil scrawling a scribbly and looping line] ChatGPT Plus is here to help you through finals

Screenshot of ChatGPT[.]com/students showing an introductory offer for college students during finals; captured 04/04/2025

That lack of expertise and capacity has a direct impact on people’s ability to discern facts, produce knowledge, and even participate in civic/public life. The diminishment of critical thinking skills makes people more susceptible to propaganda and other forms of dis- and misinformation— problems which, themselves, are already being exacerbated by the proliferation of “Generative AI” text and image systems and people not fulling understanding them for the bullshit engines they are.

The abovementioned susceptibility allows authoritarian-minded individuals and groups to thus further degrade belief in shared knowledge and consensus reality and to erode trust in expertise, thus exacerbating and worsening the next turn on the cycle when it starts all over again.

All of this creates the very conditions by which authoritarians seek to cement their control: by undercutting the individual tools and social mechanisms which can empower the populace to understand and challenge the kinds of damage dictators, theocrats, fascists, and kleptocrats seek to do on the path to enriching themselves and consolidating power.

And here’s OpenAI flagrantly encouraging said over-reliance. The original post on linkedIn even has an image of someone prompting ChatGPT to guide them on “mastering [a] calc 101 syllabus in two weeks.” So that’s nice.

No wait; the other thing… Terrible. It’s terrible.

View Kate Rouch’s graphic linkKate RouchKate Rouch • 3rd+Premium • 3rd+ Chief Marketing Officer at OpenAI.Chief Marketing Officer at OpenAI. 21h • Edited • 21 hours ago • Edited • Visible to anyone on or off LinkedIn ChatGPT Plus is free during finals! We can’t achieve our mission without empowering young people to use AI. Fittingly, today we launched our first scaled marketing campaign. The campaign shows students different ways to take advantage of ChatGPT as they study, work out, try to land jobs, and plan their summers. It also offers ChatGPT Plus’s more advanced capabilities to students for free through their finals. You’ll see creative on billboards, digital ads, podcasts, and more throughout the coming weeks. We hope you learn something useful! If you’re a college student in the US or Canada, you can claim the offer at www.chatgpt.com/students

Screenshot of a linkedIn post from OpenAI’s chief marketing officer. Captured 04/04/2025

Understand this. Push back against it. Reject its wholesale uncritical adoption and proliferation. Demand a more critical and nuanced stance on “AI” from yourself, from your representatives at every level, and from every company seeking to shove this technology down our throats.

Audio, Slides, and Transcript for my 2024 SEAC Keynote

Back in October, I was the keynote speaker for the Society for Ethics Across the Curriculum‘s 25th annual conference. My talk was titled “On Truth, Values, Knowledge, and Democracy in the Age of Generative ‘AI,’” and it touched on a lot of things that I’ve been talking and writing about for a while (in fact, maybe the title is familiar?), but especially in the past couple of years. Covered deepfakes, misinformation, disinformation, the social construction of knowledge, artifacts, and consensus reality, and more. And I know it’s been a while since the talk, but it’s not like these things have gotten any less pertinent, these past months.

As a heads-up, I didn’t record the Q&A because I didn’t get the audience’s permission ahead of time, and considering how much of this is about consent, that’d be a little weird, yeah? Anyway, it was in the Q&A section where we got deep into the environmental concerns of water and power use, including ways to use those facts to get through to students who possibly don’t care about some of the other elements. There were a honestly a lot of really trenchant questions from this group, and I was extremely glad to meet and think with them. Really hoping to do so more in the future, too.

A Black man with natural hair shaved on the sides & long in the center, grey square-frame glasses, wearing a silver grey suit jacket, a grey dress shirt with a red and black Paisley tie, and a black N95 medical mask stands on a stage behind a lectern and in front of a large screen showing a slide containing the words On Truth, Values, Knowledge,and Democracy in the Age of Generative “AI”Dr. Damien Patrick Williams Assistant Professor of Philosophy Assistant Professor of Data Science University of North Carolina at Charlotte, and an image of the same man, unmasked, with a beard, wearing a silver-grey pinstriped waistcoat & a dark grey shirt w/ a purple paisley tie in which bookshelves filled w/ books & framed degrees are visible in the background

Me at the SEAC conference; photo taken by Jason Robert (see alt text for further detailed description).

Below, you’ll find the audio, the slides, and the lightly edited transcript (so please forgive any typos and grammatical weirdnesses). All things being equal, a goodly portion of the concepts in this should also be getting worked into a longer paper coming out in 2025.

Hope you dig it.

Until Next Time.

Continue Reading

Appendix A: An Imagined and Incomplete Conversation about “Consciousness” and “AI,” Across Time

Every so often, I think about the fact of one of the best things my advisor and committee members let me write and include in my actual doctoral dissertation, and I smile a bit, and since I keep wanting to share it out into the world, I figured I should put it somewhere more accessible.

So with all of that said, we now rejoin An Imagined and Incomplete Conversation about “Consciousness” and “AI,” Across Time, already (still, seemingly unendingly) in progress:

René Descartes (1637):
The physical and the mental have nothing to do with each other. Mind/soul is the only real part of a person.

Norbert Wiener (1948):
I don’t know about that “only real part” business, but the mind is absolutely the seat of the command and control architecture of information and the ability to reflexively reverse entropy based on context, and input/output feedback loops.

Alan Turing (1952):
Huh. I wonder if what computing machines do can reasonably be considered thinking?

Wiener:
I dunno about “thinking,” but if you mean “pockets of decreasing entropy in a framework in which the larger mass of entropy tends to increase,” then oh for sure, dude.

John Von Neumann (1958):
Wow things sure are changing fast in science and technology; we should maybe slow down and think about this before that change hits a point beyond our ability to meaningfully direct and shape it— a singularity, if you will.

Clynes & Klines (1960):
You know, it’s funny you should mention how fast things are changing because one day we’re gonna be able to have automatic tech in our bodies that lets us pump ourselves full of chemicals to deal with the rigors of space; btw, have we told you about this new thing we’re working on called “antidepressants?”

Gordon Moore (1965):
Right now an integrated circuit has 64 transistors, and they keep getting smaller, so if things keep going the way they’re going, in ten years they’ll have 65 THOUSAND. :-O

Donna Haraway (1991):
We’re all already cyborgs bound up in assemblages of the social, biological, and techonological, in relational reinforcing systems with each other. Also do you like dogs?

Ray Kurzweil (1999):
Holy Shit, did you hear that?! Because of the pace of technological change, we’re going to have a singularity where digital electronics will be indistinguishable from the very fabric of reality! They’ll be part of our bodies! Our minds will be digitally uploaded immortal cyborg AI Gods!

Tech Bros:
Wow, so true, dude; that makes a lot of sense when you think about it; I mean maybe not “Gods” so much as “artificial super intelligences,” but yeah.

90’s TechnoPagans:
I mean… Yeah? It’s all just a recapitulation of The Art in multiple technoscientific forms across time. I mean (*takes another hit of salvia*) if you think about the timeless nature of multidimensional spiritual architectures, we’re already—

DARPA:
Wait, did that guy just say something about “Uploading” and “Cyborg/AI Gods?” We got anybody working on that?? Well GET TO IT!

Disabled People, Trans Folx, BIPOC Populations, Women:
Wait, so our prosthetics, medications, and relational reciprocal entanglements with technosocial systems of this world in order to survive makes us cyborgs?! :-O

[Simultaneously:]

Kurzweil/90’s TechnoPagans/Tech Bros/DARPA:
Not like that.
Wiener/Clynes & Kline:
Yes, exactly.

Haraway:
I mean it’s really interesting to consider, right?

Tech Bros:
Actually, if you think about the bidirectional nature of time, and the likelihood of simulationism, it’s almost certain that there’s already an Artificial Super Intelligence, and it HATES YOU; you should probably try to build it/never think about it, just in case.

90’s TechnoPagans:
…That’s what we JUST SAID.

Philosophers of Religion (To Each Other):
…Did they just Pascal’s Wager Anselm’s Ontological Argument, but computers?

Timnit Gebru and other “AI” Ethicists:
Hey, y’all? There’s a LOT of really messed up stuff in these models you started building.

Disabled People, Trans Folx, BIPOC Populations, Women:
Right?

Anthony Levandowski:
I’m gonna make an AI god right now! And a CHURCH!

The General Public:
Wait, do you people actually believe this?

Microsoft/Google/IBM/Facebook:
…Which answer will make you give us more money?

Timnit Gebru and other “AI” Ethicists:
…We’re pretty sure there might be some problems with the design architectures, too…

Some STS Theorists:
Honestly this is all a little eugenics-y— like, both the technoscientific and the religious bits; have you all sought out any marginalized people who work on any of this stuff? Like, at all??

Disabled People, Trans Folx, BIPOC Populations, Women:
Hahahahah! …Oh you’re serious?

Anthony Levandowski:
Wait, no, nevermind about the church.

Some “AI” Engineers:
I think the things we’re working on might be conscious, or even have souls.

“AI” Ethicists/Some STS Theorists:
Anybody? These prejudices???

Wiener/Tech Bros/DARPA/Microsoft/Google/IBM/Facebook:
“Souls?” Pfffft. Look at these whackjobs, over here. “Souls.” We’re talking about the technological singularity, mind uploading into an eternal digital universal superstructure, and the inevitability of timeless artificial super intelligences; who said anything about “Souls?”

René Descartes/90’s TechnoPagans/Philosophers of Religion/Some STS Theorists/Some “AI” Engineers:

[Scene]


Read more of this kind of thing at:
Williams, Damien Patrick. Belief, Values, Bias, and Agency: Development of and Entanglement with “Artificial Intelligence.” PhD diss., Virginia Tech, 2022. https://vtechworks.lib.vt.edu/handle/10919/111528.

As of this week, I have a new article in the July-August 2023 Special Issue of American Scientist Magazine. It’s called “Bias Optimizers,” and it’s all about the problems and potential remedies of and for GPT-type tools and other “A.I.”

This article picks up and expands on thoughts started in “The ‘P’ Stands for Pre-Trained” and in a few threads on the socials, as well as touching on some of my comments quoted here, about the use of chatbots and “A.I.” in medicine.

I’m particularly proud of the two intro grafs:

Recently, I learned that men can sometimes be nurses and secretaries, but women can never be doctors or presidents. I also learned that Black people are more likely to owe money than to have it owed to them. And I learned that if you need disability assistance, you’ll get more of it if you live in a facility than if you receive care at home.

At least, that is what I would believe if I accepted the sexist, racist, and misleading ableist pronouncements from today’s new artificial intelligence systems. It has been less than a year since OpenAI released ChatGPT, and mere months since its GPT-4 update and Google’s release of a competing AI chatbot, Bard. The creators of these systems promise they will make our lives easier, removing drudge work such as writing emails, filling out forms, and even writing code. But the bias programmed into these systems threatens to spread more prejudice into the world. AI-facilitated biases can affect who gets hired for what jobs, who gets believed as an expert in their field, and who is more likely to be targeted and prosecuted by police.

As you probably well know, I’ve been thinking about the ethical, epistemological, and social implications of GPT-type tools and “A.I.” in general for quite a while now, and I’m so grateful to the team at American Scientist for the opportunity to discuss all of those things with such a broad and frankly crucial audience.

I hope you enjoy it.

So with the job of White House Office of Science and Technology Policy director having gone to Dr. Arati Prabhakar back in October, rather than Dr. Alondra Nelson, and the release of the “Blueprint for an AI Bill of Rights” (henceforth “BfaAIBoR” or “blueprint”) a few weeks after that, I am both very interested also pretty worried to see what direction research into “artificial intelligence” is actually going to take from here.

To be clear, my fundamental problem with the “Blueprint for an AI bill of rights” is that while it pays pretty fine lip-service to the ideas of  community-led oversight, transparency, and abolition of and abstaining from developing certain tools, it begins with, and repeats throughout, the idea that sometimes law enforcement, the military, and the intelligence community might need to just… ignore these principles. Additionally, Dr. Prabhakar was director of DARPA for roughly five years, between 2012 and 2015, and considering what I know for a fact got funded within that window? Yeah.

To put a finer point on it, 14 out of 16 uses of the phrase “law enforcement” and 10 out of 11 uses of “national security” in this blueprint are in direct reference to why those entities’ or concept structures’ needs might have to supersede the recommendations of the BfaAIBoR itself. The blueprint also doesn’t mention the depredations of extant military “AI” at all. Instead, it points to the idea that the Department Of Defense (DoD) “has adopted [AI] Ethical Principles, and tenets for Responsible Artificial Intelligence specifically tailored to its [national security and defense] activities.” And so with all of that being the case, there are several current “AI” projects in the pipe which a blueprint like this wouldn’t cover, even if it ever became policy, and frankly that just fundamentally undercuts Much of the real good a project like this could do.

For instance, at present, the DoD’s ethical frames are entirely about transparency, explainability, and some lipservice around equitability and “deliberate steps to minimize unintended bias in Al …” To understand a bit more of what I mean by this, here’s the DoD’s “Responsible Artificial Intelligence Strategy…” pdf (which is not natively searchable and I had to OCR myself, so heads-up); and here’s the Office of National Intelligence’s “ethical principles” for building AI. Note that not once do they consider the moral status of the biases and values they have intentionally baked into their systems.

An "Explainable AI" diagram from DARPA, showing two flowcharts, one on top of the other. The top one is labeled "today" and has the top level condition "task" branching to both a confused looking human user and state called "learned function" which is determined by a previous state labeled "machine learning process" which is determined by a state labeled "training data." "Learned Function" feeds "Decision or Recommendation" to the human user, who has several questions about the model's beaviour, such as "why did you do that?" and "when can i trust you?" The bottom one is labeled "XAI" and has the top level condition "task" branching to both a happy and confident looking human user and state called "explainable model/explanation interface" which is determined by a previous state labeled "new machine learning process" which is determined by a state labeled "training data." "explainable model/explanation interface" feeds choices to the human user, who can feed responses BACK to the system, and who has several confident statements about the model's beaviour, such as "I understand why" and "I know when to trust you."

An “Explainable AI” diagram from DARPA

Continue Reading

I’m Not Afraid of AI Overlords— I’m Afraid of Whoever’s Training Them To Think That Way

by Damien P. Williams

I want to let you in on a secret: According to Silicon Valley’s AI’s, I’m not human.

Well, maybe they think I’m human, but they don’t think I’m me. Or, if they think I’m me and that I’m human, they think I don’t deserve expensive medical care. Or that I pose a higher risk of criminal recidivism. Or that my fidgeting behaviours or culturally-perpetuated shame about my living situation or my race mean I’m more likely to be cheating on a test. Or that I want to see morally repugnant posts that my friends have commented on to call morally repugnant. Or that I shouldn’t be given a home loan or a job interview or the benefits I need to stay alive.

Now, to be clear, “AI” is a misnomer, for several reasons, but we don’t have time, here, to really dig into all the thorny discussion of values and beliefs about what it means to think, or to be a pow3rmind— especially because we need to take our time talking about why values and beliefs matter to conversations about “AI,” at all. So instead of “AI,” let’s talk specifically about algorithms, and machine learning.

Machine Learning (ML) is the name for a set of techniques for systematically reinforcing patterns, expectations, and desired outcomes in various computer systems. These techniques allow those systems to make sought after predictions based on the datasets they’re trained on. ML systems learn the patterns in these datasets and then extrapolate them to model a range of statistical likelihoods of future outcomes.

Algorithms are sets of instructions which, when run, perform functions such as searching, matching, sorting, and feeding the outputs of any of those processes back in on themselves, so that a system can learn from and refine itself. This feedback loop is what allows algorithmic machine learning systems to provide carefully curated search responses or newsfeed arrangements or facial recognition results to consumers like me and you and your friends and family and the police and the military. And while there are many different types of algorithms which can be used for the above purposes, they all remain sets of encoded instructions to perform a function.

And so, in these systems’ defense, it’s no surprise that they think the way they do: That’s exactly how we’ve told them to think.

[Image of Michael Emerson as Harold Finch, in season 2, episode 1 of the show Person of Interest, “The Contingency.” His face is framed by a box of dashed yellow lines, the words “Admin” to the top right, and “Day 1” in the lower right corner.]

Continue Reading

Hello Everyone.

Here is my prerecorded talk for the NC State R.L. Rabb Symposium on Embedding AI in Society.

There are captions in the video already, but I’ve also gone ahead and C/P’d the SRT text here, as well.
[2024 Note: Something in GDrive video hosting has broken the captions, but I’ve contacted them and hopefully they’ll be fixed soon.]

There were also two things I meant to mention, but failed to in the video:

1) The history of facial recognition and carceral surveillance being used against Black and Brown communities ties into work from Lundy Braun, Melissa N Stein, Seiberth et al., and myself on the medicalization and datafication of Black bodies without their consent, down through history. (Cf. Me, here: Fitting the description: historical and sociotechnical elements of facial recognition and anti-black surveillance”.)

2) Not only does GPT-3 fail to write about humanities-oriented topics with respect, it still can’t write about ISLAM AT ALL without writing in connotations of violence and hatred.

Also I somehow forgot to describe the slide with my email address and this website? What the hell Damien.

Anyway.

I’ve embedded the content of the resource slides in the transcript, but those are by no means all of the resources on this, just the most pertinent.

All of that begins below the cut.

 Black man with a mohawk and glasses, wearing a black button up shirt, a red paisley tie, a light grey check suit jacket, and black jeans, stands in front of two tall bookshelves full of books, one thin & red, one of wide untreated pine, and a large monitor with a printer and papers on the stand beneath it.

[First conference of the year; figured i might as well get gussied up.]

Continue Reading

Below are the slides, audio, and transcripts for my talk “SFF and STS: Teaching Science, Technology, and Society via Pop Culture” given at the 2019 Conference for the Society for the Social Studies of Science, in early September.

(Cite as: Williams, Damien P. “SFF and STS: Teaching Science, Technology, and Society via Pop Culture,” talk given at the 2019 Conference for the Society for the Social Studies of Science, September 2019)

[Direct Link to the Mp3]

[Damien Patrick Williams]

Thank you, everybody, for being here. I’m going to stand a bit far back from this mic and project, I’m also probably going to pace a little bit. So if you can’t hear me, just let me know. This mic has ridiculously good pickup, so I don’t think that’ll be a problem.

So the conversation that we’re going to be having today is titled as “SFF and STS: Teaching Science, Technology, and Society via Pop Culture.”

I’m using the term “SFF” to stand for “science fiction and fantasy,” but we’re going to be looking at pop culture more broadly, because ultimately, though science fiction and fantasy have some of the most obvious entrees into discussions of STS and how making doing culture, society can influence technology and the history of fictional worlds can help students understand the worlds that they’re currently living in, pop Culture more generally, is going to tie into the things that students are going to care about in a way that I think is going to be kind of pertinent to what we’re going to be talking about today.

So why we are doing this:

Why are we teaching it with science fiction and fantasy? Why does this matter? I’ve been teaching off and on for 13 years, I’ve been teaching philosophy, I’ve been teaching religious studies, I’ve been teaching Science, Technology and Society. And I’ve been coming to understand as I’ve gone through my teaching process that not only do I like pop culture, my students do? Because they’re people and they’re embedded in culture. So that’s kind of shocking, I guess.

But what I’ve found is that one of the things that makes students care the absolute most about the things that you’re teaching them, especially when something can be as dry as logic, or can be as perhaps nebulous or unclear at first, I say engineering cultures, is that if you give them something to latch on to something that they are already from with, they will be more interested in it. If you can show to them at the outset, “hey, you’ve already been doing this, you’ve already been thinking about this, you’ve already encountered this, they will feel less reticent to engage with it.”

Continue Reading

Below are the slides, audio, and transcripts for my talk ‘”Any Sufficiently Advanced Neglect is Indistinguishable from Malice”: Assumptions and Bias in Algorithmic Systems,’ given at the 21st Conference of the Society for Philosophy and Technology, back in May 2019.

(Cite as: Williams, Damien P. ‘”Any Sufficiently Advanced Neglect is Indistinguishable from Malice”: Assumptions and Bias in Algorithmic Systems;’ talk given at the 21st Conference of the Society for Philosophy and Technology; May 2019)

Now, I’ve got a chapter coming out about this, soon, which I can provide as a preprint draft if you ask, and can be cited as “Constructing Situated and Social Knowledge: Ethical, Sociological, and Phenomenological Factors in Technological Design,” appearing in Philosophy And Engineering: Reimagining Technology And Social Progress. Guru Madhavan, Zachary Pirtle, and David Tomblin, eds. Forthcoming from Springer, 2019. But I wanted to get the words I said in this talk up onto some platforms where people can read them, as soon as possible, for a  couple of reasons.

First, the Current Occupants of the Oval Office have very recently taken the policy position that algorithms can’t be racist, something which they’ve done in direct response to things like Google’s Hate Speech-Detecting AI being biased against black people, and Amazon claiming that its facial recognition can identify fear, without ever accounting for, i dunno, cultural and individual differences in fear expression?

[Free vector image of a white, female-presenting person, from head to torso, with biometric facial recognition patterns on her face; incidentally, go try finding images—even illustrations—of a non-white person in a facial recognition context.]


All these things taken together are what made me finally go ahead and get the transcript of that talk done, and posted, because these are events and policy decisions about which I a) have been speaking and writing for years, and b) have specific inputs and recommendations about, and which are, c) frankly wrongheaded, and outright hateful.

And I want to spend time on it because I think what doesn’t get through in many of our discussions is that it’s not just about how Artificial Intelligence, Machine Learning, or Algorithmic instances get trained, but the processes for how and the cultural environments in which HUMANS are increasingly taught/shown/environmentally encouraged/socialized to think is the “right way” to build and train said systems.

That includes classes and instruction, it includes the institutional culture of the companies, it includes the policy landscape in which decisions about funding and get made, because that drives how people have to talk and write and think about the work they’re doing, and that constrains what they will even attempt to do or even understand.

All of this is cumulative, accreting into institutional epistemologies of algorithm creation. It is a structural and institutional problem.

So here are the Slides:

The Audio:

[Direct Link to Mp3]

And the Transcript is here below the cut:

Continue Reading