anna lauren hoffman

All posts tagged anna lauren hoffman

I’m Not Afraid of AI Overlords— I’m Afraid of Whoever’s Training Them To Think That Way

by Damien P. Williams

I want to let you in on a secret: According to Silicon Valley’s AI’s, I’m not human.

Well, maybe they think I’m human, but they don’t think I’m me. Or, if they think I’m me and that I’m human, they think I don’t deserve expensive medical care. Or that I pose a higher risk of criminal recidivism. Or that my fidgeting behaviours or culturally-perpetuated shame about my living situation or my race mean I’m more likely to be cheating on a test. Or that I want to see morally repugnant posts that my friends have commented on to call morally repugnant. Or that I shouldn’t be given a home loan or a job interview or the benefits I need to stay alive.

Now, to be clear, “AI” is a misnomer, for several reasons, but we don’t have time, here, to really dig into all the thorny discussion of values and beliefs about what it means to think, or to be a pow3rmind— especially because we need to take our time talking about why values and beliefs matter to conversations about “AI,” at all. So instead of “AI,” let’s talk specifically about algorithms, and machine learning.

Machine Learning (ML) is the name for a set of techniques for systematically reinforcing patterns, expectations, and desired outcomes in various computer systems. These techniques allow those systems to make sought after predictions based on the datasets they’re trained on. ML systems learn the patterns in these datasets and then extrapolate them to model a range of statistical likelihoods of future outcomes.

Algorithms are sets of instructions which, when run, perform functions such as searching, matching, sorting, and feeding the outputs of any of those processes back in on themselves, so that a system can learn from and refine itself. This feedback loop is what allows algorithmic machine learning systems to provide carefully curated search responses or newsfeed arrangements or facial recognition results to consumers like me and you and your friends and family and the police and the military. And while there are many different types of algorithms which can be used for the above purposes, they all remain sets of encoded instructions to perform a function.

And so, in these systems’ defense, it’s no surprise that they think the way they do: That’s exactly how we’ve told them to think.

[Image of Michael Emerson as Harold Finch, in season 2, episode 1 of the show Person of Interest, “The Contingency.” His face is framed by a box of dashed yellow lines, the words “Admin” to the top right, and “Day 1” in the lower right corner.]

Continue Reading

Hello Everyone.

Here is my prerecorded talk for the NC State R.L. Rabb Symposium on Embedding AI in Society.

There are captions in the video already, but I’ve also gone ahead and C/P’d the SRT text here, as well.
[2024 Note: Something in GDrive video hosting has broken the captions, but I’ve contacted them and hopefully they’ll be fixed soon.]

There were also two things I meant to mention, but failed to in the video:

1) The history of facial recognition and carceral surveillance being used against Black and Brown communities ties into work from Lundy Braun, Melissa N Stein, Seiberth et al., and myself on the medicalization and datafication of Black bodies without their consent, down through history. (Cf. Me, here: Fitting the description: historical and sociotechnical elements of facial recognition and anti-black surveillance”.)

2) Not only does GPT-3 fail to write about humanities-oriented topics with respect, it still can’t write about ISLAM AT ALL without writing in connotations of violence and hatred.

Also I somehow forgot to describe the slide with my email address and this website? What the hell Damien.

Anyway.

I’ve embedded the content of the resource slides in the transcript, but those are by no means all of the resources on this, just the most pertinent.

All of that begins below the cut.

 Black man with a mohawk and glasses, wearing a black button up shirt, a red paisley tie, a light grey check suit jacket, and black jeans, stands in front of two tall bookshelves full of books, one thin & red, one of wide untreated pine, and a large monitor with a printer and papers on the stand beneath it.

[First conference of the year; figured i might as well get gussied up.]

Continue Reading