I talked with Hewlett Packard Enterprise’s Curt Hopkins, for their article “4 obstacles to ethical AI (and how to address them).” We spoke about the kinds of specific tools and techniques by which people who populate or manage artificial intelligence design teams can incorporate expertise from the humanities and social sciences. We also talked about compelling reasons why they should do this, other than the fact that they’re just, y’know, very good ideas.
From the Article:
To be clear, this is an instance in which I tried to find capitalist reasons that would convince capitalist people to do the right thing. To that end, you should imagine that all of my sentences start with “Well if we’re going to continue to be stuck with global capitalism until we work to dismantle it…” Because they basically all did.To “bracket out” bias, Williams says, “I have to recognize how I create systems and code my understanding of the world.” That means making an effort early on to pay attention to the data entered. The more diverse the group, the less likely an AI system is to reinforce shared bias. Those issues go beyond gender and race; they also encompass what you studied, the economic group you come from, your religious background, all of your experiences.
…
That becomes another reason to diversify the technical staff, says Williams. This is not merely an ethical act. The business strategy may produce more profit because the end result may be a more effective AI. “The best system is the one that best reflects the wide range of lived experiences and knowledge in the world,” he says.
I get how folx might think that framing would be a bit of a buzzkill for a tech industry audience, but I do want to highlight and stress something: Many of the ethical problems we’re concerned with mitigating or ameliorating are direct products of the capitalist system in which we are making these choices and building these technologies.
All of that being said, I’m not the only person there with something interesting to say, and you should go check out the rest of my and other people’s comments.
Until Next Time.